首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5087篇
  免费   987篇
  国内免费   713篇
测绘学   30篇
大气科学   8篇
地球物理   1795篇
地质学   1947篇
海洋学   1997篇
天文学   14篇
综合类   173篇
自然地理   823篇
  2024年   13篇
  2023年   60篇
  2022年   109篇
  2021年   198篇
  2020年   243篇
  2019年   266篇
  2018年   234篇
  2017年   214篇
  2016年   224篇
  2015年   227篇
  2014年   292篇
  2013年   415篇
  2012年   238篇
  2011年   310篇
  2010年   268篇
  2009年   307篇
  2008年   381篇
  2007年   334篇
  2006年   370篇
  2005年   237篇
  2004年   255篇
  2003年   253篇
  2002年   175篇
  2001年   172篇
  2000年   128篇
  1999年   132篇
  1998年   99篇
  1997年   97篇
  1996年   77篇
  1995年   65篇
  1994年   60篇
  1993年   65篇
  1992年   63篇
  1991年   39篇
  1990年   47篇
  1989年   27篇
  1988年   17篇
  1987年   9篇
  1986年   8篇
  1985年   18篇
  1984年   9篇
  1983年   17篇
  1982年   5篇
  1981年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有6787条查询结果,搜索用时 31 毫秒
91.
水库淤积形态是影响库容分布、水库排沙的一项重要因素。小浪底水库近坝段淤积泥沙粒径极细,具有流动性,针对其细颗粒泥沙淤积特点,揭示了水库细颗粒淤积物的流变特性与流型特征;通过引入水、淤积物、床面之间的界面受力分析,构建了细颗粒淤积物失稳流动描述模式,并与水沙输移模型相耦合,建立了考虑细颗粒淤积物流动特性的水库淤积形态模拟方法,在此基础上对小浪底水库淤积形态进行了验证分析。研究结果表明:低密度细颗粒淤积物为宾汉型流体,淤积平衡坡降较小,当其密度大于1.25 g/cm 3后,流动性快速减弱;考虑细颗粒淤积物流动特征的水库淤积形态模拟结果与实测结果吻合较好。研究成果可为水库淤积形态形成机理及其对水沙调控的响应研究提供技术支撑。  相似文献   
92.
为探究冲绳海槽放射虫属种的空间分布特征及其海洋学意义,对采自冲绳海槽北部、中部和南部3个海域的34个表层沉积物中的放射虫群落组成特征进行了系统研究。总体看来,冲绳海槽表层沉积物放射虫丰度较高,群落组成以热带-亚热带暖水放射虫属种为主,其中优势种为Tetrapyle octacantha group、Spongodiscus resurgensEuchitonia furcata。结果表明冲绳海槽放射虫属种存在明显的区域差异性,除T.octacantha group以外,其余暖水指示种含量总体上均呈现南高北低的变化趋势。冲绳海槽北部陆架-陆坡区受长江冲淡水的影响,温度和盐度变化较为剧烈,因此可能不利于大多数放射虫暖水指示种的发育,但T.octacantha group却因自身适宜生存的温度范围较大,进而得以在冲绳海槽北部陆坡区呈现出高值。较高的中层水温度可能是抑制亚北极中层水指示种Cycladophora davisiana在冲绳海槽分布的主要因素,而冲绳海槽的高海槛则限制了太平洋深层水种Carpocanistrum papillosumCornutella profunda的入侵。冲绳海槽放射虫的空间分布对区域海洋环境特征有着很好的响应,因此可以为古环境重建研究提供重要依据。  相似文献   
93.
Determining sediment provenance allows a better understanding of fluvial palaeo-dynamics, and identifying involved watersheds, at broad spatio-temporal scales. Conventional approaches for source identification are usually based on the physical, mineralogical, geochemical, magnetic or isotopic properties of sediments. Rapid, non-destructive and, in well-established contexts, highly accurate, mid-infrared spectroscopy is an alternative method for investigating sediment sources. The present research objectives are: (i) to use the mid-infrared spectroscopy method to discriminate the provenance of fine sediments, by applying discriminant analysis on a large set of reference samples from three different watersheds in the Upper Rhine area (associated with the Rhine, Ill and Vosges tributaries); (ii) to clarify whether the provenance spectra signatures are influenced by riverine depositional contexts (bars versus banks) and, to some extent, by grain size and/or high organic matter content; and (iii) to apply the mid-infrared spectroscopy – discriminant analysis method to a study of fluvial palaeo-dynamics and determine the provenance of palaeo-channel infillings. Three main sedimentary sources, divided into eight sub-categories, have been characterized by 196 modern reference samples from 78 collecting sites. Discriminant analysis displayed a strong separating power by classifying correctly the origin of samples without any inter-group overlap, independently from the geomorphological context (bar or bank) and associated slight changes in organic matter contents or grain size. Mid-infrared spectroscopy – discriminant analysis investigations of the palaeo-channel infill, complemented by radiocarbon dates and mineralogical data, allowed reconstructing general trends for the local morpho-sedimentary dynamics over the last ca 12 millennia.  相似文献   
94.
本研究旨在讨论天津滨海新区的围垦对其附近水域水动力和悬沙输运所造成的影响,并进行定量评估。在天津港南部、北部海域分别选取4个站位进行了全潮水文观测,获取了流速剖面、悬沙浓度剖面数据,并据此计算了底切应力、潮不对称性以及余流。结果表明,底部悬沙浓度与流速、底切应力存在相位一致性,绝大部分站位的沉积物都呈现向岸净输运的趋势,悬沙通量分解显示潮汐捕捉项是该区域悬沙输运的主要贡献项;围垦愈增的2009~2015年,天津港北部潮不对称性增强,向陆的单宽悬沙输运率由20.15 g/(m·s)变至24.92 g/(m·s),而南部海域潮不对称性减弱,向陆的单宽悬沙输运率从37.75 g/(m·s)减小至6.37 g/(m·s)。综上,持续地围垦可能导致天津港附近海域的水动力条件改变,推测北部潮滩淤涨可能加快,而南部淤涨速率减小。  相似文献   
95.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
96.
Agricultural sediment and pesticide runoff is a widespread ecological and human health concern. Numerical simulation models, such as Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM), have been increasingly used to quantify off‐site agricultural pollutant movement. However, RZWQM has been criticized for its inability to simulate sedimentation processes. The recent incorporation of the sedimentation module of Groundwater Loading Effects of Agricultural Management Systems has enabled RZWQM to simulate sediment and sediment‐associated pesticides. This study compares the sediment and pesticide transport simulation performance of the newly released RZWQM and PRZM using runoff data from 2 alfalfa fields in Davis, California. A composite metric (based on coefficient of determination, Nash–Sutcliffe efficiency, index of agreement, and percent bias) was developed and employed to ensure robust, comprehensive assessment of model performance. Results showed that surface water runoff was predicted reasonably well (absolute percent bias <31%) by RZWQM and PRZM after adjusting important hydrologic parameters. Even after calibration, underestimation bias (?89% ≤ PBIAS  ≤ ?36%) for sediment yield was observed in both models. This might be attributed to PRZM's incorrect distribution of input water and uncertainty in RZWQM's runoff erosivity coefficient. Moreover, the underestimation of sediment might be less if the origin of measured sediment was considered. Chlorpyrifos losses were simulated with reasonable accuracy especially for Field A (absolute PBIAS  ≤ 22%), whereas diuron losses were underestimated to a great extent (?98% ≤ PBIAS  ≤ ?65%) in both models. This could be attributed to the underprediction of herbicide concentration in the top soil due to the limitations of the instantaneous equilibrium sorption model as well as the high runoff potential of herbicide formulated as water‐dispersible granules. RZWQM and PRZM partitioned pesticides into the water and sediment phases similarly. According to model predictions, the majority of pesticide loads were carried via the water phase. On the basis of this study, both RZWQM and PRZM performed well in predicting runoff that carried highly adsorptive pesticides on an event basis, although the more physically based RZWQM is recommended when field‐measured soil hydraulic properties are available.  相似文献   
97.
This paper presents a novel triple‐layer model, called VART DO‐3L, for simulation of spatial variations in dissolved oxygen (DO) in fine‐grained streams, characterized by a fluid mud (fluff or flocculent) layer (an advection‐dominated storage zone) as the interface between overlying stream water and relatively consolidated streambed sediment (a diffusion‐dominated storage zone). A global sensitivity analysis is conducted to investigate the sensitivity of VART DO‐3L model input parameters. Results of the sensitivity analysis indicate that the most sensitive parameter is the relative size of the advection‐dominated storage zones (As/A), followed by a lumped reaction term (R) for the flocculent layer, biological reaction rate (μo) in diffusive layer and biochemical oxygen demand concentration (L) in water column. In order to address uncertainty in model input parameters, Monte Carlo simulations are performed to sample parameter values and to produce various parameter combinations or cases. The VART DO‐3L model is applied to the Lower Amite River in Louisiana, USA, to simulate vertical and longitudinal variations in DO under the cases. In terms of longitudinal variation, the DO level decreases from 7.9 mg l at the Denham Springs station to about 2.89 mg l?1 at the Port Vincent station. In terms of vertical variation, the DO level drops rapidly from the overlying water column to the advection‐dominated storage zone and further to the diffusive layer. The DO level (CF) in the advective layer (flocculent layer) can reach as high as 40% of DO concentration (C) in the water column. The VART DO‐3L model may be applied to similar rivers for simulation of spatial variations in DO level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
98.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
This study describes the use of linearly modulated optically stimulated luminescence (LM‐OSL) to distinguish surface‐soil derived sediments from those derived from channel bank erosion. LM‐OSL signals from quartz extracted from 15 surface‐soil and five channel bank samples were analysed and compared to signals from samples collected from two downstream river sites. Discriminant analysis showed that the detrapping probabilities of fast, first slow and second slow components of the LM‐OSL signal can be used to differentiate between the samples collected from the channel bank and surface‐soil sources. We show that for each of these source end members these components are all normally distributed. These distributions are then used to estimate the relative contribution of surface‐soil derived and channel bank derived sediment to the river bed sediments. The results indicate that channel bank derived sediments dominate the sediment sources at both sites, with 90.1 ± 3% and 91.9 ± 1.9% contributions. These results are in agreement with a previous study which used measurements of 137Cs and 210Pbex fallout radionuclides to estimate the relative contribution from these two sources. This result shows that LM‐OSL may be a useful method, at least in the studied catchment, to estimate the relative contribution of surface soil and channel erosion to river sediments. However, further research in different settings is required to test the difference of OSL signals in distinguishing these sediment sources. And if generally acceptable, this technique may provide an alternative to the use of fallout radionuclides for source tracing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
100.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号